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SEAFLOWER
Strategies to Exploit Anchors for Floating Offshore Wind Energy Reaping

 Support the phase of pre-commercial development of floating wind technologies from the

geotechnical standpoint.

 Aid with a rational technology transfer between the O&G and wind market.

 Develop a procedure to store previous experience on anchors and make it available for

the new needs of the wind sector.
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What SEAFLOWER does

INRAE

UWA

STORING

PROCESSING

ENCODING

EXPLOITING

Collect experimental evidence on anchors’ behaviour from model tests
plus relevant soil info 
built on available data at COFS  

Develop FE models of the experiments
ADVANCED  
SIMPLIFIED

ROBUSTNESS
COMPLEXITY 
COMPUTATIONAL EFFORToptimisation

Meta-modelling of FE models
Input and Outputs (as originated by FE) correlation
Built on few FEA yield accurate outputs

LOW COMP EXPENSES 
LOW COMPLEXITY
USER-FRIENDLINESS

 Predict outputs from a given set of input

 Generate results for probabilistic approaches

 Generate parameters for mechanical models

(p-y, macro-element)

Meta-models for end-users’ needs
- Demonstrators, LCOE
- Preliminary design, advanced design    
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Proof of concept: anchor pile in sand

❖ Axial-symmetric 2D FEM

 = tand

15D

10D

❖ Soil: - homogeneous, Dr = const

- linear elastic, E = f (z)

- M-C criterion, f’, y’ = f (z)

❖ Pile: - linear elastic homogeneous

❖ Interface: friction law (d = 29°)

❖ Soil stress state: Jardine et al. 1998

❖ Load condition: monotonic tensile (w = 10%D)

w

FEM: details



FEM input parameters Symbol [unit]

Pile diameter D [m]

Pile slenderness L/D [-]

Wall thickness ratio D/t [-]

Soil relative density Dr [%]

Factor for elastic modulus a [-]

FEM output Symbol [unit]

Bearing capacity Q [kN]

Initial stiffness K [kN/m]

K

Q

FEM: problem position



L

15D

10D

input 
parameters

D [m]

L/D [-]

D/t [-]

Dr [%]

a [-]

after Schmertmann, 1976

C0 = 24.94;   C1 = 0.46;   C2 = 2.96 

after Jamiolkowki et al. 2001

after Jardine et al. 1998

after Bolton, 1986

FEM: details



input 
parameters D = 0.830m L/D = 23.925 D/t = 25.372 Dr = 80.44% a = 4.797

FEM: details



A sample of N=100 simulations is created by varying the input model parameters within reasonable ranges

FEM input parameters Symbol [unit] Range

Pile diameter D [m] 0.76 – 2.4

Pile slenderness L/D [-] 10.0 – 60.0

Wall thickness ratio D/t [-] 25.0 – 100.0

Soil relative density Dr [%] 40.0 – 100.0

Dimensionless factor for elastic modulus a [-] 3.0 – 9.0

FEM: FE testing programme

Latin Hypercube Sampling - LHS



LHS is a sampling method enabling to better cover the domain of variations of the input variables, 
thanks to a stratified sampling strategy. The sampling procedure is based on dividing the range of 
each variable into several intervals of equal probability. The number of intervals equals the required 
sample dimension.

Example

Two linearly independent input variables both ranging from 0 to 1.

Sample size, N = 5

The Latin property of the hypercube requires that each of the 5 equal 
probability intervals (i.e. 1/5) be filled (i.e. each row and each column 
is filled with one point). 

Also notice that the exact location of the design point is randomly 
sampled within that cell using a uniform distribution for each marginal 
variable.

FEM: sampling with LHS



In case the sample size has to be enlarged, it can be done without losing its Latin Hypercube property.

Additional data, Nadd = 5 → New Sample size, Nnew = 10

The additional data are added by re-dividing the original design 
into N+Nadd intervals (e.g. 5+5=10) keeping the original design 
points exactly in the same position. It then randomly fills the 
empty row-column sets.

NOTE: the augmenting points do not necessarily form a Latin 
Hypercube themselves. The original design and augmenting points 
may form a Latin Hypercube, or there may be more than one point 
per row in the augmented design. 
If the augmented points are equal to the number of original 
points, then a strictly uniform Latin hypercube is guaranteed.

FEM: sampling with LHS



N = 100

D

L/D

D/t

Dr

a

FEM: sampling with LHS



FEM: results FEM input parameters Symbol [unit]

Pile diameter D [m]

Pile slenderness L/D [-]

Wall thickness ratio D/t [-]

Soil relative density Dr [%]

Factor for elastic modulus a [-]

FEM output Symbol [unit]

Bearing capacity Q [kN]

Initial stiffness K [kN/m]



A metamodel or surrogate model is the model of a model, and metamodeling is the 
process of generating such metamodels. Metamodel are mathematical algorithm 
representing input and output relations. Metamodelling consists on learning the link 
between the two datasets. 

Classification methods

Support Vector Classification
SVC

Regression methods

Polynomial Chaos Expansion

PCE

If the prediction aim of the metamodel is to classify the observations in a set of finite 
labels, it is said to be a classification method. On the other hand, if the goal is to predict a 
continuous target variable, the metamodel is said to be a regression task.

Metamodelling: the PCE



X = (X1, … , Xn)
TInput random vector of linearly

independent parameters

Model response vector collecting
Experimental or numerical observations

Y = (Y1, … , Yn)
T

𝑌 ≈ ෡𝑀 𝑋 = ෍

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝑍

• Yk(Z) are multivariate polynomials orthonormal basis with respect to the PDF of Z (fX)

• 𝛼𝑘 are the corresponding coeffients

T is an isoprobabilistic transform applied to the input variables𝒁 = 𝑇 𝑿

https://openturns.github.io/openturns/latest/index.html

PCE: details

M may be a physical system or a computer code running a simulation, but it is a black-box function. The 
PCE is an approximation algorithm of this function, which gathers all type of model response as the 
projection of the physical model in an orthonormal basis space.

https://openturns.github.io/openturns/latest/index.html


Classical families of univariate orthonormal polynomials

𝒁 = 𝑇 𝑿

Inner product for orthonormality property of the polynomial basis

Orthonormal polynomial basis

( ) ( ) ( ) ,,i j i j X i j
D

x x f x dxy y y y d= =

PCE: details



@ Adaptive Strategy
https://openturns.github.io/openturns/latest/user_manual/response_surface/_generated/

openturns.AdaptiveStrategy.html#openturns.AdaptiveStrategy

Least squares
strategy

Integration 
strategy

@ Projection Strategy
https://openturns.github.io/openturns/latest/user_manual/response_surface/

_generated/openturns.ProjectionStrategy.html#openturns.ProjectionStrategy

PCE: details - Truncation strategy of the multivariate orthonormal basis

PCE: details - Evaluation strategy of the coefficients, ak

https://openturns.github.io/openturns/latest/user_manual/response_surface/_generated/openturns.AdaptiveStrategy.html#openturns.AdaptiveStrategy
https://openturns.github.io/openturns/latest/user_manual/response_surface/_generated/openturns.ProjectionStrategy.html#openturns.ProjectionStrategy


isoprobabilistic transform 𝒁 = 𝑇 𝑿

FEM input parameters Symbol [unit] Range

Pile diameter D [m] 0.76 – 2.4

ComposedDistribution(Uniform(a = 0.76, b = 2.4), […])

| y0 = [x0]->[1.2195*(x0-1.58)]

( ) ( ) ( )( )2 XT X f x x X  −

PCE: details – looking through the PCE…



[1,

1.73205 * x0,1.73205 * x1,1.73205 * x2,1.73205 * x3,1.73205 * x4,

-1.11803 + 3.3541 * x0^2, […]

[…],1.12741 - 40.5868 * x4^2 + 223.228 * x4^4 - 386.928 * x4^6 + 207.283 * x4^8]

#87
Legendre orthonormal

polynomial basis

Yk

0 : [   0.774293    124.217       ]

1 : [  -0.0934781   -23.1485      ]

2 : [  -0.299315    -68.9418      ]

3 : [  -0.0487808    -0.00423974  ]

[…]

84 : [  -0.00532252   -0.895583    ]

85 : [   0.00353601    0.88392     ]

86 : [   0.00243645    0           ]

PCE: details – looking through the PCE…
zero degree

degree one

degree two

degree eight

#87 (x2)
coefficients

ak



[1,

1.73205 * x0,1.73205 * x1,1.73205 * x2,1.73205 * x3,1.73205 * x4,

-1.11803 + 3.3541 * x0^2, […]

[…],1.12741 - 40.5868 * x4^2 + 223.228 * x4^4 - 386.928 * x4^6 + 207.283 * x4^8]

#87
Legendre orthonormal

polynomial basis

Yk

0 : [   0.774293    124.217       ]

1 : [  -0.0934781   -23.1485      ]

2 : [  -0.299315    -68.9418      ]

3 : [  -0.0487808    -0.00423974  ]

[…]

84 : [  -0.00532252   -0.895583    ]

85 : [   0.00353601    0.88392     ]

86 : [   0.00243645    0           ]

[0.774293,124.217] + [-0.0934781,-23.1485] * (1.73205 * x0) + [-0.299315,-68.9418] * (1.73205 * x1) + [-0.0487808,-0.00423974] * 

(1.73205 * x2) + [0.334187,44.3097] * (1.73205 * x3) + 

[…]  

+ [-0.00532252,-0.895583] * (1.12741 - 40.5868 * x2^2 + 223.228 * x2^4 - 386.928 * x2^6 + 207.283 * x2^8) + [0.00353601,0.88392] * 

(1.12741 - 40.5868 * x3^2 + 223.228 * x3^4 - 386.928 * x3^6 + 207.283 * x3^8) + [0.00243645,0] * (1.12741 - 40.5868 * x4^2 + 223.228 * 

x4^4 - 386.928 * x4^6 + 207.283 * x4^8)

𝑌 ≈ ෩ℳ 𝑋 = ෍

𝑘∈𝐾

𝛼𝑘Ψ𝑘 𝑍

PCE: details – looking through the PCE…
zero degree

degree one

degree two

degree eight

#87 (x2)
coefficients

ak

#PCE (x2)



PCE (N=100) Vs FEM (N=50)

Q2 = 94.83% Q2 = 98.10%

FE bearing capacity, Q [kN] FE initial stiffness, K [kN/m]
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PCE: results



Q2 = 94.83% Q2 = 98.10%

Q2 = 97.44% Q2 = 99.38%

FE bearing capacity, Q [kN] FE initial stiffness, K [kN/m]
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PCE (N=200) Vs FEM (N=50)PCE: results



Q2 = 94.83% Q2 = 98.10%

Q2 = 95.98% Q2 = 98.96%

FE bearing capacity, Q [kN] FE initial stiffness, K [kN/m]
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PCE_LOO (N=100) Vs FEM (N=50)PCE: results



K

Q

conclusions

load

displacement

input 
parameters

D [m] L/D [-] D/t [-] Dr [%] a [-]
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